Is the venoarterial carbondioxide gradient and lactate predictor of inadequate tissue perfusion during cardiopulmonary bypass?

Venoarteriyel karbondioksit farkı kardiyopulmoner baypasta yetersiz doku perfüzyonunun laktat belirleyicisi mi?

Fevzi Toraman,¹ Zehra Serpil Ustalar Özgen,¹ Şahin Şenay,² Ümit Güllü,³ Hasan Karabulut,² Cem Alhan²

Departments of ¹Anestesiology and Reanimation, ²Cardiovascular and Thoracic Surgery,

Acıbadem University, İstanbul, Turkey;

³Department of Cardovascular Surgery, Acıbadem Hospital, İstanbul, Turkey

Background: In this study, we aimed to investigate the possible relationship between the venoarterial gradient of carbon dioxide (Dv-a PCO₂) and lactate during cardiopulmonary bypass (CPB).

Methods: Sixty consecutive patients (35 males, 53 females; mean age 64 years; range 38 to 78 years) who were scheduled for elective isolated coronary artery bypass graft (CABG) surgery were included in the study after obtaining their informed consent and the approval of the ethics committee of the hospital. All patients were followed up by the same surgical and anesthesia team. The adequacy of tissue perfusion during CPB was evaluated by the venoarterial partial carbon dioxide gradient, lactate level, measurement of arterial and venous blood gas, urinary flow rate, and hemodynamic parameters. The measurements were performed in four periods: before CPB (T1), at the beginning of CPB (T2) at 36 °C and 32 °C of hypothermia (T3) and at the end of rewarming (T4) at 37 °C. The relationship between tissue perfusion parameters was assessed by Pearson's correlation analysis.

Results: There was a significant correlation between Dv-aPCO2 and the venous lactate level (r=0.54, p=0.046) as well as between Dv-aPCO2 and the arterial lactate level (r=0.55, p=0.042) during the T2 and T4 periods of CPB. There was also a significant correlation between Dv-aPCO2 and arterial base excess (BE) (r=0.64, p=0.013) and between Dv-aPCO2 and arterial HCO3 (r=0.54, p=0.048) during the T3 and T4 periods.

Conclusion: Our study results suggest that in the hypothermia period, the increase in the venoarterial carbon dioxide gradient (Dv-aPCO₂) is not inversely associated with insufficient blood flow during CPB and there was a significant correlation between Dv-aPCO₂ and the tissue perfusion parameters during the periods other than hypothermia.

Key words: Cardiopulmonary bypass; tissue perfusion; venoarterial carbondioxide gradient.

Amaç: Bu çalışmada kardiopulmoner baypas (KPB) sırasında venoarteriyel karbondioksit farkı (Dv-a PCO2) ve laktat arasındaki muhtemel ilişkisi araştırıldı.

Çalışma planı: Hastanemiz etik kurulu onayı ve hasta onamları alınan elektif izole koroner arter baypas greft (KABG) cerrahisi yapılacak 60 ardışık hasta (35 erkek, 53 kadın; ort. yaş 64 yıl; dağılım 38-78 yıl) çalışmaya alındı. Tüm hastalar aynı anestezi ve cerrahi ekip tarafından izlendi. Kardiopulmoner baypas süresince doku perfüzyonun yeterliliği venoarteriyel parsiyel karbondioksit farkı, laktat düzeyi, arteriyel ve venöz kan gazı ölçümü, idrar çıkış hızı ve hemodinamik parametrelerin analizi ile değerlendirildi. Ölçümler kardiopulmoner baypas öncesi (Tı), KPB başlangıcında 36 °C'de (T2), hipotermide 32 °C'de (T3) ve yeniden ısınmanın sonunda 37 °C'de (T4) olmak üzere dört periyotta yapıldı. Doku perfüzyon parametreleri arasındaki ilişki, Pearson korelasyon analizi ile değerlendirildi.

Bulgular: Kardiopulmoner baypasın T2 ile T4 periyotları arasında doku perfüzyon parametrelerinden Dv-aPCO2 ile arteriyel laktat düzeyi (r=0.55, p=0.042) ve Dv-aPCO2 ile venöz laktat (r=0.54, p=0.046) arasında anlamlı ilişki vardı. T3-T4 periyotları arasında da Dv-aPCO2 ile arteriyel base excess (BE) (r=-064, p=0.013,), Dv-aPCO2 ile arteriyel HCO3 (r=-0.54, p=0.048) arasında anlamlı ilişki vardı.

Sonuç: Çalışma bulgularımız, hipotermi döneminde, karbondioksit çözünürlüğündeki değişikliğe bağlı olarak, KBP sırasında venoarteriyel karbondioksit farkındaki (Dv-aPCO2) artışın yetersiz kan akımı ile ters orantılı olmadığını ve hipotermi periyodu dışındaki dönemlerde, Dv-aPCO2 ile doku perfüzyon parametreleri arasında anlamlı bir ilişkinin olduğunu göstermiştir.

Anahtar sözcükler: Kardiyopulmoner baypas; doku perfüzyonu; venoarteriyel karbondioksit farkı.

Available online at www.tgkdc.dergisi.org doi: 10.5606/tgkdc.dergisi.2012.092 QR (Quick Response) Code Received: March 10, 2011 Accepted: September 20, 2011 Correspondence: Zehra Serpil Ustalar Özgen, M.D. Acıbadem Üniversitesi Anesteziyoloji ve Reanimasyon Anabilim Dalı, 34848 Maltepe, İstanbul, Turkey. Tel: +90 216 - 544 44 80 e-mail: serpozgen@tnn.net Most cardiac surgery is currently being performed under cardiopulmonary bypass (CPB). The purpose of CPB is to supply adequate oxygen (O2) to the tissues and to remove the carbon dioxide (CO₂) that is produced in the tissues from the body. The adequate supply of O2 to the tissues during CBP depends on maintaining the parameters of the hematocrit (Hct), partial pressure of oxygen (pO₂), mean arterial pressure (MAP), and pump flow values at acceptable limits. However, even when this is possible, sometimes tissue hypoxia occurs during CPB because of the preoperative cardiovascular status and the accompanying preexisting pathologies of other systems.^[1,2] Therefore, it is necessary to monitor the adequacy of tissue perfusion using various parameters during CPB and to adjust the hemodynamic parameters according to changing conditions. Blood lactate levels, arterial and venous oxygen saturation, the rate of urinary output, and base excess (BE) have to be monitored during CPB for the adequacy of tissue perfusion. For example, knowing the blood lactate level is vital for monitoring the adequacy of tissue perfusion during CPB.^[3,4] However, it is known that changes in the levels of blood lactate are affected by several factors during CPB.^[5-8]

Partial pressure of carbon dioxide (pCO₂) in venous blood and the partial pressure of veno-arterial carbon dioxide ($D_{v-a}pCO_2$) gradients increase due to cessation of circulation, traumatic shock, or inadequate circulation resulting from severe sepsis or a decrease in systemic or pulmonary circulation.^[9] During CPB, similar states in systemic and pulmonary circulation have been encountered, and the term "sepsis-like syndrome" has been used for CPB.^[10]

Other parameters such as lactate, the veno-arterial carbon dioxide (CO₂) gradient, and mixed venous oxygen saturation (SvO₂) are not accepted as definitive indicators for tissue perfusion, and they all have their own deficiencies. However, they are currently accepted as indirect tissue perfusion indicators. In our study, our aim was to search for any correlations and changes between lactate, the veno-arterial CO₂ gradient, and SvO₂ during the non-physiological state of circulation, or CPB.

PATIENTS AND METHODS

Sixty consecutive patients (35 males, 53 females; mean age 64 years; range 38 to 78 years) who were scheduled for elective isolated coronary bypass were accepted into the study with the approval of the hospital ethics committee and with the informed consent of the patient. There were no exclusions. The demographic data of the patients is shown in Table 1. All of the patients were premedicated with alprazolam 0.5 mg (Xanax) taken orally the night before surgery. Midazolam 125 mic/kg intramuscular (IM) was given 30 minutes before surgery. A 16 G intravenous (i.v.) cannula was used for the i.v. lines of all of the patients admitted to the operation room, and isotonic saline infusion 100 ml/hour i.v. was started. Hemodynamic monitorization of the patients was done with a two-channel electrocardiogram (ECG) (Siemens 7000 model) DII, V5 derivations, a pulse oximeter, invasive arterial pressure (with a catheter placed in the radial artery by an 18 G cannula and an Edwards Lifesciences TruWave Disposable Pressure Transducer, ICU Medical, Inc. San Clemente, CA 92673 USA), and central venous pressure. Induction of anesthesia was performed with midazolam 50 mic/kg and pancuronium 2 mg, followed by fentanyl 25-35 mic/kg and pancuronium in total 0.1 mg/kg. Endotracheal intubation was done after at least five minutes of mask ventilation. Desflurane 3-4% in oxygen 50% and N2O 50% were used for patients whose hemodynamic parameters were appropriate (systolic blood pressure >120 mmHg, ejection fraction >40%). Anesthesia was maintained using oxygen 50% and air 50% in other patients. Midazolam and vecuronium infusions, both 80 mic/kg/hour, were started. Furosemid 0.5 mg/kg i.v. bolus was given. Beta-blocker agents or vasodilators were used to control hypertension. Heparin 4 mg/kg was given after the left internal thoracic artery had removed, and activated coagulation (ACT) was maintained at between 450-600 seconds. Cardiopulmonary bypass was started following cannulation. The hematocrit values were kept at >18%, with the MAP remaining between 50-80 mmHg, and the pump flow between 2-2.5 L/m²/min throughout the operation. A fresh gas flow was provided at 1.35 L/m²/min in order to remove the carbon dioxide which had accumulated in the reservoir during CPB. Moderate hypothermia (32°) was applied to all patients. Antegrade cold crystalloid cardioplegia (7-10 ml/kg) was used after cross-clamping. When the extracorporeal circulation was terminated, midazolam and vecuronium infusions were set at 50 mic/kg/hour. These infusions

 Table 1. The demographic and operative data of the patients

Parameters	%	Mean±SD
Age (years)		64±10
Female sex	40	
Basal surface area		1.86 ± 0.18
Cardiopulmonary bypass time (minutes)		72±35
Crossclamp time (minutes)		38±18
Fluid balance at the end of operation (ml)		635±773

SD: Standard deviation.

	T1 (Before CPB)		T2 (CPB, Normothermia)		(CPB, 1	T3 (CPB, Hypothermia)		T4 (CPB, rewarming)	
	% Me	ean±SD	%	Mean±SD	%	Mean±SD	%	Mean±SD	
Dv-a PCO2 (mmHg)	7.9	6±1.6		5.89±2.1		5.74±2		7.24±2.6	
Lactate (mmol/l)	0.	9±0.16		0.9 ± 0.2		1.02±0.3		1.6±0.6	
Actual base excess	0.	2±2		2±1.6		1±1.7		-1.9±2.4	
Arterial HCO3	2	5±1.7		26±1.7		25±1.2		23±1.9	
SaO2 (%)	99.9		99.9		99.9		99.9		
SvO2 (%)	7	'4±6		74±7		76±10		59±11	
Hematocrit (%)	3	5±4.7		25±4.3		28.5±4.2		30±5	
Mean arterial pressure	8	0±12		68±13		68±14		71±11	
Pump flow		_		2.25±0.1		2.15±0.2		2.15±0.1	

Table 2. Hemodynamic parameters and blood gas analysis

CPB: Cardiopulmonary bypass; SD: Standard deviation.

were stopped following skin closure. The efficiency of tissue perfusion was monitored throughout the CPB via the D_{v-a}pCO₂ gradient (by blood samples from the venous and arterial lines of CPB), lactate levels, blood gas analysis of venous and arterial blood, urinary output, and assessment of hemodynamic parameters.

Measurements were conducted at four periods: before CPB (T1), at the beginning of CPB at 36 °C (T2), at hypothermia at 32 °C (T3), at the end of rewarming at 37 °C (T4).

Data was reported as a percentage or as a mean \pm standard deviation (SD), and t-tests were used for continuous variables. The variables were considered significant if *p* values were less than 0.05. During the assessment of the correlation between the tissue perfusion parameters, the differences between the changes in hemodynamic parameters between the periods were found and compared according to Pearson's correlation.

RESULTS

The demographic and operative data of our patients is given in Table 1.

There was no significant correlation between the parameters in any of the periods. The values of $D_{v-a}PCO_2$ were 5.89±2.1 5.74±2 and 7.24±2.6 in the T2, T3, T4 periods, respectively while the lactate values during the

same periods were 0.9 ± 0.2 1.02 ± 0.3 and 1.6 ± 0.6 . The hemodynamic and blood gas values are given in Table 2.

The T₂ and T₃ periods were compared with regard to the correlation of the change of tissue perfusion parameters between periods, and Table 3 reveals that there was no significant correlation between $D_{V-a}PCO_2$ and lactate values. The results in which both the changes in venous lactate (r=0.54, p=0.046) and arterial lactate (r=055, p=0.042) values along with those of $D_{V-a}PCO_2$ showed significant correlation when the T₂ and T₄ periods were compared. These results are provided in Table 4. A significant correlation was found between $D_{V-a}PCO_2$ and arterial base excess (BE) values (r=-0.64, p=-0.019) when the T₃ and T₄ periods were compared, and these results are shown in Table 4.

DISCUSSION

The main source of carbon dioxide in our body is CO₂, and it is generated as the byproduct of aerobic metabolism and is produced after the buffering process of acids, such as lactic acid, is induced as the result of anaerobic metabolism. The solubility of CO₂ is 20 times more than that of O₂, so it is more significant for CO₂ to be carried in a dissolved state.^[11-13] The main route of excretion for CO₂ in circulation is the lungs, and under normal conditions, the value for D_{V-a}PCO₂ is 2-5 mmHg. The increased load of CO₂ is balanced by

Table 3. The correlations of changes in the tissue perfusion parameters in between the T₂ and T₃ of cardiopulmonary bypass

Parameters	р	Coefficient of Pearson correlation
Arterial-venous lactate	0.001	0.87
Mixed venous saturation-arterial HCO3	0.005	0.7
Arterial base excess-arterial HCO3	0.046	0.54

Parameters	р	Coefficient of Pearson correlation
Dv-aPCO2-arterial lactate	0.042	0.55
Dv-aPCO2-venous lactate	0.046	0.54
Arterial-venous lactate	0.001	0.88
Venous lactate-base excess	0.013	-0.64
Arterial HCO3-arterial base excess	0.001	0.87

Table 4. The correlations of changes in the tissue perfusion parameters in between T_2 and T_4 periods of cardiopulmonary bypass

Table 5. The correlations of changes in tissue perfusion parameters in between the periods T₃ and T₄ of cardiopulmonary bypass

Parameters	р	Coefficient of Pearson correlation
Dv-aPCO2-arterial base excess	0.013	-0.64
Dv-aPCO2-arterial HCO3	0.048	-0.54
Arterial lactate-venous lactate	0.001	0.90
Arterial base excess-arterial HCO3	0.001	0.90
Venous lactate-arterial base excess	0.002	-0.75
Venous lactate-arterial HCO3	0.005	-0.70

the elimination of CO₂ through the lungs. However, it is necessary to increase the transfer of CO₂ to the lungs in order to be able to increase the elimination of CO₂.

In low perfusion states when there is no hypoxia, studies have shown that more CO₂ than normal enters the circulation in the peripheral tissue and causes venous hypercapnia due to the increased circulation time. In turn, this causes the $D_{v-a}PCO_2$ values to increase.^[12,13]

In hypoxic situations in which there is insufficient blood flow, CO₂ production is a result of the tamponade of the acids coming out. This method has less CO₂ production; thus, it is more difficult for the produced CO₂ to enter circulation. Because of this, it is takes more effort to detect the CO₂ produced under hypoxic conditions. High venous flow is needed to wash out the CO₂ produced in the tissue under hypoxic conditions, and it is not possible to detect the produced CO₂ under hypoxic conditions by D_{V-a}PCO₂.^[14]

The increase in veno-arterial CO₂ gradient is not only related to the inadequate blood flow but also to CO₂ production and elimination. In septic shock, which is typical in hyperdynamic cardiac failure, the $D_{v-a}PCO_2$ values have been shown to increase due to systemic hypoperfusion.^[15]

The increase in D_{v-a}PCO₂ values in septic shock is due to several factors. First, there is the impairment of ventricular contractility due to the circulating mediators of the patients in septic shock. As a result, there is a decrease in systemic vascular resistance (SVR); consequently the heart cannot supply the increasing demand. The second factor is the rise in production of CO₂ due to the hyperdynamic state. In addition, there is the CO₂ produced during the buffering of the acids along with the increased need for the buffering of the higher amount of lactic acids during septic shock.^[16] Finally, there is the change in CO₂ elimination through the lungs because of respiratory failure due to sepsis.

Mecher et al.^[9] stated that in 37 patients in septic shock, 19 had Dv-aPCO2 values of >6 mmHg with low cardiac output, but after fluid replacement, the low cardiac output improved, and the Dv-aPCO2 values decreased. Bakker et al.^[16] followed 64 septic patients and detected low cardiac output in 15 who had an increase in Dv-aPCO2 and PvCO2 values. The authors deduced that there is a close relationship between the low cardiac output and Dv-aPCO2 and PvCO2. Bakker et al.^[16] also showed that there was no statistically significant difference between the Dv-aPCO2 values of patients who were ventilated mechanically and those who were breathing spontaneously (p=0.055). The values of D_{v-a}PCO₂ also increased more in patients with high mortality, and this relationship with Dv-aPCO2 is stronger than the parameters related to oxygen and Da-PO2.

Our study was designed to detect inadequate blood flow during CPB with $D_{v-a}PCO_2$, especially in septic patients, when taking into consideration the efficiency of the use of $D_{v-a}PCO_2$ for this purpose. When we compared the $D_{v-a}PCO_2$ values with the other oxygenation parameters and blood lactate levels^[3,4] in the normothermic-hypothermic period of CPB (T2 versus T3), no significant correlation was found between the changes in lactate $D_{v-a}PCO_2$ and SvO_2 values (Table 3).

The expected correlation between the T₂ and T₃ periods could not be detected because of the increased solubility of CO₂ (dissolving of CO₂ and becoming a liquid form) attributable to hypothermia and the relationship between the total CO2 content. The PO2 had also been disrupted.^[17] Although venous hypercapnia was expected during the hypothermic period of CPB due to inadequate blood flow, it did not occur because of the increased solubility of CO2. This results indirectly in the increase in Dv-aPCO2 not occurring. This physiological change in CO₂ due to temperature difference modifies and reduces the efficiency of Dv-aPCO2 to show the inadequate perfusion in the hypothermic period of CPB. Therefore, it is not possible to say that the adequacy of tissue perfusion can be monitored safely only via the monitorization of Dv-aPCO2 during all periods of CPB. Likewise, when evaluating the other indirect parameters of the adequacy of tissue perfusion, such as SvO₂, along with the changes in the values of lactate during the hypothermic periods of CPB, the SvO₂ and lactate levels changed in parallel directions. However, the decrease in SvO₂ was expected to be parallel to the increase in lactate. In order to explain this difference in hypothermia, what the SvO₂ reflects and how it works should be precisely known.

Mixed venous oxygen saturation is commonly used to assess the balance of total body oxygen delivery to oxygen demand during cardiopulmonary bypass. Given an adequate and stable arterial oxygen content and metabolic rate, SvO2 of more than 60% implies adequate systemic oxygen delivery.^[17] Despite the general acceptance of this fact, major postoperative endorgan complications potentially secondary to undetected regional ischemia during bypass continue to be reported, for example acute mesenteric ischemia, gastrointestinal bleeding, and acute pancreatitis.^[18] Mixed venous oxygen saturation may not accurately represent major end-organ venous desaturation and acidemia because it represents pooled venous blood from all organs.^[19]

In addition to this deficiency in the ability of SvO2 to detect the adequacy of tissue oxygenation, when CPB and hypothermia are added to the scene, the interpretation of SvO2 becomes even more confusing.

During CPB practice, this change in the redistribution of blood flow along with any associated negative outcomes has led clinicians to prefer to work with the highest blood flow, MAP and hematocrit values during CPB. In addition, with hypothermia, as stated above, the total body O₂ consumption (VO₂) decreases more than the O₂ supply, and an increase in the SvO₂ is observed, especially in the hypothermic period of CPB. However, there are regional hypoperfusion areas. This situation decreases the reliability of SvO₂.

Lactate is considered to be the gold standard of the tissue perfusion indicators. Microcirculation fails in nonpulsatile flow and during hypothermia, however redistribution occurs, especially during the hypothermic period of CPB, and although tissue hypoxia exists blood lactate levels may stay within normal range similar to other tissue perfusion parameters.^[3-8] However, when the regional perfusion improves, there is an increase in blood lactate levels (wash-out). In order to diagnose poor tissue perfusion in time, all of the indirect tissue perfusion parameters should be closely monitored and evaluated during CPB since they work in conjunction with each other.

In conclusion, our results showed that $D_{v-a}PCO_2$ and the other indirect parameters of tissue perfusion are not adequate if evaluated alone. Every parameter has its own intrinsic value, but each also comes with its own deficiencies. Therefore, monitorization of the adequacy of tissue perfusion should prove to be more accurate when all of the parameters are evaluated together.

Declaration of conflicting interests

The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Funding

The authors received no financial support for the research and/or authorship of this article.

REFERENCES

- 1. Gold JP, Charlson ME, Williams-Russo P, Szatrowski TP, Peterson JC, Pirraglia PA, et al. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg 1995;110:1302-11.
- 2. Murphy GJ, Reeves BC, Rogers CA, Rizvi SI, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation 2007;116:2544-52.
- 3. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 1970;41:989-1001.
- Ariza M, Gothard JW, Macnaughton P, Hooper J, Morgan CJ, Evans TW. Blood lactate and mixed venous-arterial PCO2 gradient as indices of poor peripheral perfusion following cardiopulmonary bypass surgery. Intensive Care Med 1991;17:320-4.
- Landow L. Splanchnic lactate production in cardiac surgery patients. Crit Care Med 1993;21:S84-91.
- 6. Adluri RK, Singh AV, Skoyles J, Baker M,

Mitchell IM. Measurement of intraperitoneal metabolites during hypothermic cardiopulmonary bypass using microdialysis. Scand Cardiovasc J 2011;45:229-35.

- Schiavello R, Cavaliere F, Sollazzi L, Loffreda C, Marana E. Changes of serum pyruvate and lactate in open-heart surgery. Resuscitation 1984;11:35-45.
- Toraman F, Karabulut H, Çalışırişçi Ü, Özyurt A, Alhan C, Kopman E. Hiperventilasyonun koroner arter hastalarında koroner sinüs oksijen içeriği ve laktat üretimine etkisi. Turk Gogus Kalp Dama 199;7:446-9.
- Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 1990;18:585-9.
- Moitra VK, Sladen RN. Cardiopulmonary bypass and the lung. In: Gravlee GP, Davis RF, Kurusz M, Utley JR, editors. Cardiopulmonary bypass: principles and practice. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 311-20.
- Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol 2006;72:597-604.
- 12. West JB. Gastransport to the periphery: how gases are moved to the peripheral tissues? In: West JB, editor. Respiratory physiology. The essentials. 4th ed. Baltimore: Williams &

Wilkins; 1990. p. 69-85.

- 13. Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med 1998;26:979-80.
- Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 1993;148:867-71.
- Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987;15:923-9.
- Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992;101:509-15.
- Gennaro M, Ascer E, Matano R, Jacobowitz IJ, Cunningham JN Jr, Uceda P. Acute mesenteric ischemia after cardiopulmonary bypass. Am J Surg 1993;166:231-6.
- McDaniel LB, Zwischenberger JB, Vertrees RA, Nutt L, Uchida T, Nguyen T, et al. Mixed venous oxygen saturation during cardiopulmonary bypass poorly predicts regional venous saturation. Anesth Analg 1995;80:466-72.
- Takami Y, Masumoto H. Mixed venous-arterial CO2 tension gradient after cardiopulmonary bypass. Asian Cardiovasc Thorac Ann 2005;13:255-60.