Çalışma planı: Kliniğimizde tomografisi çekilen ve akciğerinde nodül saptanan hastalar Ocak 2015 ve Aralık 2020 tarihleri arasında geriye dönük olarak tarandı. Hastalar iki gruba ayrıldı: benign (n=68; 38 erkek, 30 kadın; ort. yaş: 59±12.2 yıl; dağılım, 27-81 yıl) ve malign (n=29; 19 erkek, 10 kadın; ort. yaş: 65±10.4 yıl; dağılım, 43-88 yıl). Ayrıca kesitlerinde herhangi bir patoloji bulunmayan sağlıklı hastalardan oluşan bir kontrol grubu (n=67; 38 erkek, 29 kadın; ort. yaş: 56.9±14.1 yıl; dağılım, 26-81 yıl) oluşturuldu. Derin sinir ağları, oluşturduğumuz üç sınıflı veri setinin %80?i ile eğitildi ve verilerin %20?si ile test edildi. Derin sinir ağlarının eğitiminin ardından bu ağlardan özellik çıkarımı yapıldı. Veri setinden çıkarılan özellikler makine öğrenmesi algoritmaları ile sınıflandırıldı. Performans sonuçları karışıklık matrisi analizi kullanılarak elde edildi.
Bulgular: Derin sinir ağlarının eğitimi sonrasında kullanılan modeller arasında en yüksek doğruluk oranına %80 ile AlexNET modelinde ulaşıldı. Özellik çıkarımı ve sınıflandırıcı kullanımı sonrasında elde edilen ikinci aşama sonuçlarda ise en yüksek doğruluk oranına %93.5 ile VGG19 modelinde destek vektör makinesi sınıflandırıcısı ile ulaşıldı. Ayrıca destek vektör makinesi sınıflandırıcısının kullanılmasıyla tüm modellerde doğruluk oranlarında artışlar tespit edildi.
Sonuç: Benign ve malign akciğer nodüllerinin derin öğrenme modelleri ve özellik çıkarımı kullanılarak ayrıştırılması, radyoloji pratiğinde erken tanı açısından önemli avantajlar sağlayacaktır. Çalışmamızda elde edilen sonuçlar da bu görüşü destekler niteliktedir.