Methods: We retrospectively reviewed the medical records of 405 children who were operated in the Thoracic Surgery Clinic of İstanbul University Medical Faculty between January 2001 and June 2011. Only 43 patients (20 girls, 23 boys; mean age 11.4±0.5 years; range 0 to 16 years) who underwent pulmonary sublobar resection were included in the study. Patients were evaluated in terms of age, gender, complaints on admission, history of previous diseases, diagnostic methods, operative indications, surgical procedures, complications, duration of hospitalization and outcome of the procedure.
Results: Indications for pediatric resections were oncological (n=29), non-oncological (n=9) and congenital pathologies (n=5). The mean duration of hospitalization was 3.6 days after surgical procedure. Morbidity was observed in two patients postoperatively, whereas mortality was not observed.
Conclusion: Indications of pulmonary sublobar resections varies in pediatric patients compared to adults. Pulmonary sublobar resection is a good option for children, as less functioning lung tissue is removed with fewer postoperative complications. It is also relatively simple and fast surgical method, than lobectomy.
Table 1: The clinical features of the patients (n=43)
The indications of pediatric pulmonary resections were grouped into three categories: oncological, non-oncological, or congenital pathologies. The most frequent indication was oncological pathologies (n=29, 67.5%), with pulmonary metastasis of osteosarcoma (30.2%) being seen the most. Nononcological and congenital indications were observed in nine (20.9%) and five (11.6%) patients, respectively, with bronchiectasis being the most frequent nononcological pathology (9.3%) and sequestration occurring most often in the congenital category (4.6%) (Figure 1).
In terms of surgery, 45 segmentectomies + wedge resections (7 right upper, 9 right lower, 16 left upper, 9 left lower, and 2 bilateral) were performed on 43 patients. Out of these, five were performed via video-assisted thoracic surgery (VATS). In addition, a bilateral upper + lower lobe segmentectomy + wedge resection was performed on one patient. Furthermore, a right thoracotomy was performed on 16 patients, a left thoracotomy on 21, a bilateral thoracotomy on one, a right thoracotomy + left VATS on one, and VATS alone on four others (Figure 2).
First, the segmentary artery and bronchi were isolated, ligated, and divided during the segmentectomy. Then the distal part of the segmental bronchi was occluded with a clamp, and the atelectatic segment was removed from the expanded lung with blunt dissection along the intersegmentary vein. This vein was kept intact with its main branches because they supply the two segments which were left behind.
The average duration of hospitalization was 3.6 days. Postoperative morbidity was observed in two patients who underwent rib resections in our study, whereas there was no mortality. The re-expansion defect was also observed in one patient (2.3%), and fever was seen in six (13.8%) (Figure 3).
Figure 3: Morbidity, mortality, and complication rates. ED: Expansion defect.
It can be difficult to diagnose metastatic lung tumors in pediatric patients because they may mimic more common conditions and sometimes present with non-specific symptoms such as coughing, pneumonia, hemoptysis, and shortness of breath. However, most of the tumors can be detected during follow-up examinations.[5] Although coughing was the most common symptom in our study, the vast majority of the patients had no symptoms related to pulmonary pathology, resulting in delayed diagnoses and treatment. Our findings suggest that metastatic lung tumors may be asymptomatic; therefore, physicians should remain alert for metastasis in the lungs during the follow-up of patients with extrapulmonary primary malignancies. The most common metastatic lung tumors in the children in our study were osteosarcoma and Ewing’s sarcoma. Some patients had more than one metastatic lesion, and most had metastatic tumors located in the peripheral lung. Currently, there is no standardized treatment for resecting pulmonary metastases among children, and differences can be seen with regard to the extent of the resection (segment, wide wedge, or close wedge) and the approaches used in VATS and thoracotomies. A peripherally located solitary lesion of less than 3 cm in diameter is the main indication for a sublobar resection. However, a lobectomy is preferred when the lesion is centrally located, regardless of its diameter.
Recent studies have shown that aggressive surgical approaches to pulmonary metastases in osteosarcoma improve the rate of survival.[6,7] Meyers et al.[8] found a correlation between complete resection of the primary tumor and all metastases with general survival rates in osteocarcinoma patients with synchronized pulmonary metastases. In a study by Letourneau et al.[9] that involved patients with lung metastases due to Ewing’s sarcoma, they compared those who underwent a metastasectomy with those who did not and reported that those who had surgery had a better overall survival rate. Our findings were similar in that they showed that metastasectomies improved the chance of survival. Thus, we suggest that a metastasectomy can be a lungsaving procedure for pediatric patients with metastatic disease.
Karnak et al.[10] reported that a pulmonary metastasectomy might increase the rate of survival in carefully selected children, but that it was unlikely to cure them. Therefore chemotherapy and/or radiotherapy needs to be continued in the postoperative period, and the appropriate patients received these therapies in our study.
In addition, we believe that surgery combined with oncological treatment for metastatic disease prevents recurrence and improves the chance of survival. In our study, 20.7% of the patients underwent surgery due to non-oncological indications, and bronchiectasis was seen the most often. The first treatment for this disease state is a conservative one in which antibiotics, postural physiotherapy, bronchodilators, and corticosteroids are prescribed to reduce airway obstruction and eliminate lower airway microorganisms.[11] However, we preferred and suggested that a segmentectomy be performed procedure for those patients with localized bronchiectasis. Other indications for nononcological pathologies in our study were Langerhans cell histiocytosis, atelectasis, Gorham-Stout syndrome, and an emphysematous lung. A wedge resection was performed to accurately diagnose the patients with Langerhans cell histiocytosis. Gorham-Stout syndrome (vanishing bone disease) is a rare disorder characterized by spontaneous bone resorption. It progresses rapidly and occasionally occurs after minor trauma. This is usually followed by thoracic cage, pulmonary, or pleural involvement, which leads to a compromise of respiratory function and subsequent death.[12] We performed a wedge resection in a patient with Gorham- Stout syndrome who had damaged lungs as the result of a chylothorax. We also performed a wedge resection or segmentectomy on appropriate patients with atelectasis or emphysematous lung disease.
In our study, 11.6% of the patients underwent a sublobar resection due to congenital pathologies such as sequestration, a bronchogenic cyst, a mature cystic teratoma, and congenital lobar emphysema, and no recurrence was seen in any of these patients. Hence, a sublobar resection is advocated for these patients when possible.
Pediatric patients usually undergo direct X-rays first step in the investigative process. Although direct posteroanterior (PA) X-rays can be useful for lung and heart problems, vascular interstitial pathologies, especially in the thoracic wall, may require advanced investigations such as CT, MRI, or angiography.[13] In our study, all of the patients had direct chest X-rays while 30 (69.8%) also underwent CT, five (11,6%), had HRCT, five (11.6%) had CT + PET, two (4.6%) underwent CT + MRI and one (2.3%) was prescribed CT + Doppler US. We believe that preoperative CT is very useful for evaluating metastatic lung lesions and for determining which lung segments should be resected. Because some small lesions may be missed on CT, surgeons should always palpate the lungs via gentle superficial palpation to eliminate the possibility of missed lesions during surgery.
A muscle-sparing lateral thoracotomy provides sufficient exposure for pediatric patients, and VATS is a minimally invasive method that has recently been used in conjunction with thoracic surgery. In our study, left upper and lower segmentectomies + wedge resections were performed on four patients via VATS. We routinely perform lobectomies and/or sublobar resections using VATS on adults and desire to increase our use of VATS with children. In a study by Fındık et al.[14] in which pediatric patients were reviewed for thoracotomies, complications were observed in 35 patients (18%), with atelectasia and secretion retention in 54%, postoperative extended air leakage in 20%, wound infections in 17%, hemorrhage in 3%, chylothoraces in 3%, and intrathoracic space in another 3%. In our study, morbidity was seen in two cases who underwent a costal resection together with a pulmonary sublobar resection due to Ewing’s sarcoma, but no mortality occurred. Additionally, postoperative complications were observed in seven of our patients (16.1%), with fever in six (13.9%) and an expansion defect in one (2.3%). All of the complications were remedied by close follow-up and medical treatment.
Declaration of conflicting interests
The authors declared no conflicts of interest with
respect to the authorship and/or publication of this
article.
Funding
The authors received no financial support for the
research and/or authorship of this article.
1) Mattioli G, Buffa P, Granata C, Fratino G, Rossi G, Ivani G,
et al. Lung resection in pediatric patients. Pediatr Surg Int
1998;13:10-3.
2) Kanngiesser P, Liewald F, Halter G, Sunder-Plassmann
L. Thoracic surgery in children. Eur J Cardiothorac Surg
2005;28:50-5.
3) Toker K, Özdamar D. Pediyatrik göğüs cerrahisinde anestezi
sonrası bakım. In: Yüksel M, Kaptanoğlu M, editörler.
Pediyatrik göğüs cerrahisi. İstanbul: Turgut Yayıncılık 2004.
s. 103-14.
4) Cohen MC, Kaschula RO. Primary pulmonary tumors
in childhood: a review of 31 years’ experience and the
literature. Pediatr Pulmonol 1992;14:222-32.
5) Weldon CB, Shamberger RC. Pediatric pulmonary tumors:
primary and metastatic. Semin Pediatr Surg 2008;17:17-29.
6) Briccoli A, Rocca M, Salone M, Bacci G, Ferrari S, Balladelli
A, et al. Resection of recurrent pulmonary metastases in
patients with osteosarcoma. Cancer 2005;104:1721-5.
7) Harting MT, Blakely ML, Jaffe N, Cox CS Jr, Hayes-Jordan
A, Benjamin RS, et al. Long-term survival after aggressive
resection of pulmonary metastases among children and
adolescents with osteosarcoma. J Pediatr Surg 2006;41:194-9.
8) Meyers PA, Heller G, Healey JH, Huvos A, Applewhite A,
Sun M, et al. Osteogenic sarcoma with clinically detectable
metastasis at initial presentation. J Clin Oncol 1993;11:449-53.
9) Letourneau PA, Shackett B, Xiao L, Trent J, Tsao KJ, Lally
K, et al. Resection of pulmonary metastases in pediatric
patients with Ewing sarcoma improves survival. J Pediatr
Surg 2011;46:332-5.
10) Karnak I, Emin Senocak M, Kutluk T, Tanyel FC,
Büyükpamukçu N. Pulmonary metastases in children:
an analysis of surgical spectrum. Eur J Pediatr Surg
2002;12:151-8.
11) Agasthian T, Deschamps C, Trastek VF, Allen MS, Pairolero
PC. Surgical management of bronchiectasis. Ann Thorac
Surg 1996;62:976-8.
12) Tie ML, Poland GA, Rosenow EC 3rd. Chylothorax in
Gorham’s syndrome. A common complication of a rare
disease. Chest 1994;105:208-13.