ISSN : 1301-5680
e-ISSN : 2149-8156
Turkish Journal of Thoracic and Cardiovascular Surgery     
Protective effects of hesperetin on lipopolysaccharide-induced acute lung injury in a rat model
Serkan Kaya1, Sinem Albayrak Kaya2, Elif Polat3, Zeynep Fidanol Erboğa3, Yasin Duran4, Fatin Rüştü Polat4, Hamza Malik Okuyan5, İhsan Karaboğa6
1Department of Thoracic Surgery, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
2Department of Midwifery, Biruni University, Faculty of Health Sciences, Istanbul, Turkey
3Department of Histology and Embriology, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
4Department of General Surgery, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, Turkey
5Department of Medical Services and Techniquies, Mustafa Kemal University, Hatay Vocational School of Health Sciences, Hatay, Turkey
6Department of Emergency and Disaster Medicine, Tekirdağ Namık Kemal University, School of Health, Tekirdağ, Turkey
DOI : 10.5606/tgkdc.dergisi.2020.18816
Background: In this experimental study, we aimed to investigate the effects of hesperetin, a natural flavonoid, on a lipopolysaccharideinduced acute lung injury model in rats.

Methods: Between March 2019 and May 2019, a total of 18 adult male Wistar albino rats, weighing approximately 250 to 300 g, were randomly divided into three groups as control, lipopolysaccharide, and lipopolysaccharide + hesperetin groups (n=6 in each group). The wet/dry weight ratio of lung tissue was determined. Histopathological changes were examined using light and scanning electron microscopy. Pulmonary nuclear factor-kappa beta, inducible nitric oxide synthase, and alpha-smooth muscle antigen activity were determined with indirect immunohistochemical methods. Pulmonary apoptosis was detected with the terminal deoxynucleotidyl transferase dUTP nick-end labeling method. Tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, and interleukin-10 concentrations were measured with enzyme-linked immunosorbent assay.

Results: Treatment with hesperetin significantly improved the architecture of lung tissue and reduced the wet/dry weight ratio, nuclear factor-kappa beta, inducible nitric oxide synthase, and alphasmooth muscle antigen expression, pulmonary apoptosis, and levels of proinflammatory cytokines.

Conclusion: Our study results suggest that hesperetin has a potent protective effect against lipopolysaccharide-induced acute lung injury in rats via suppression of the proinflammatory cytokine cascade, nuclear factor-kappa beta, signaling pathway activation, and apoptosis.

Keywords : Acute lung injury, inducible nitric oxide synthase, lipopolysaccharide, nuclear factor-kappa beta, pulmonary apoptosis, tumor necrosis factor-alpha
Viewed : 2741
Downloaded : 672