Mid-line re-do sternotomy was performed. After removal of surgical adhesions, aortic root aneurysm was seen. It was substantially aneurysmatic through the right and non-coronary cusps. The aortic wall was very thin over these areas. Following establishment of cardiopulmonary bypass with left femoral artery and right atrial cannulation, the Bentall procedure with composite mechanical aortic valve conduit (27 mm) was performed under mild hypothermia. Postoperative course was uneventful; the patient was taken to the ward in the second postoperative day and discharged in the seventh postoperative day. Repeated echocardiography demonstrated normally functioning aortic valve. Left ventricle ejection fraction was 62% and left ventricle end-diastolic and systolic diameters were 50 and 33 mm, respectively. Histopathological examination of the aortic wall revealed cystic medial degeneration with disrupted elastic fibers and medial fibrosis.
There are several pathophysiological explanations. According to the developmental (embryological) theory, the failed migration of the neural crest cells to the aorticopulmonary septum and subsequent unequal conotruncal septation may lead to larger aortic component with smaller pulmonary trunk.[4] Also, volume loading of aorta as a consequence of the right-to-left shunt and subaortic jet flow due to subaortic ventricular septal defect may worsen preexisting aortic pathology.[4] Even in some reports, it was demonstrated that TOF patients had intrinsic aortopathy characterized by fibrosis, ‘cystic’ medial necrosis, elastic fragmentation, and disruption of elastic lamellae similar to those with Marfan syndrome and bicuspid aortopathy.[5] Irrespective of the pathophysiological mechanism, aortic regurgitation and aortic aneurysm or dissection are encountered in natural history and need surgical intervention, eventually.[6]
Furthermore, several risk factors have been previously defined for aortic root dilatation following the TOF repair including male sex, prolonged time from palliation to repair, presence of pulmonary atresia, right aortic arch, and the older age at repair. However, in a recent multi-center, cross-sectional study, multivariate analysis showed that male sex was the only independent risk factor, although other variables were found to be statistically significant in the univariate analysis.[3] Among these risk factors, our case was male and underwent corrective surgery, when he was eight years old. Although the age at repair was not found to be statistically significant, we consider that increased transaortic flow might result from the presence of a right-to-left shunt, as the major hemodynamic component in aortopathy.
Despite growing population of these patients, there is still no evidence-based cut-off level of aortic root for surgical intervention. Nonetheless, it has been reported that 40% of patients who presented with dissections had aortic diameters <50 mm. Therefore, in TOF patients with severe aortic regurgitation which requires aortic valve replacement, careful assessment of aortic root and ascending aorta is crucial. In our case, cardiac magnetic resonance imaging helped us to evaluate aortic root and plan procedure.[6]
In conclusion, it is important to assess aortic valve, aortic root, and ascending aorta during routine followup of previously operated tetralogy of Fallot patients. Early diagnosis and management would result in improved better functional status and higher survival rates in this patient population.
Declaration of conflicting interests
The authors declared no conflicts of interest with respect to
the authorship and/or publication of this article.
Funding
The authors received no financial support for the research
and/or authorship of this article.
1) Pigula FA, Khalil PN, Mayer JE, del Nido PJ, Jonas RA.
Repair of tetralogy of Fallot in neonates and young infants.
Circulation 1999;100(19 Suppl):II157-61.
2) Oechslin EN, Harrison DA, Harris L, Downar E, Webb GD,
Siu SS, et al. Reoperation in adults with repair of tetralogy of
fallot: indications and outcomes. J Thorac Cardiovasc Surg
1999;118:245-51.
3) Mongeon FP, Gurvitz MZ, Broberg CS, Aboulhosn J,
Opotowsky AR, Kay JD, et al. Aortic root dilatation in adults
with surgically repaired tetralogy of fallot: a multicenter
cross-sectional study. Circulation 2013;127:172-9.
4) Tan JL, Gatzoulis MA, Ho SY. Aortic root disease in
tetralogy of Fallot. Curr Opin Cardiol 2006;21:569-72.