The operation was performed using cardiopulmonary bypass at moderate hypothermia. After cardiac arrest and right atriotomy incision, intraatrial cavity was explored to find the distal end of the fistula (Figure 3). The fistula sac was observed on the anterolateral wall of the right atrium and it was opened through a more lateral incision on the right atrial wall. This was the second atriotomy incision. The fistula sac was internally opened and a common right atrial chamber was formed. Then, the proximal neck of the fistula tract was ligated internally. The distal outflow of the fistula sac was ligated through the right atrium. The operation was completed uneventfully.
No residual shunt was observed during intraoperative transesophageal echocardiography. Postoperative period was uneventful without myocardial ischemia or infarction. During followup, there was no residual fistula tract on cardiac catheterization (Figure 2b). The patient was discharged in the sixth postoperative day. Her clinical condition is good at three years during follow-up.
Children are mostly asymptomatic and presenting symptoms may usually develop at older ages.[1,2] Patients typically present with dyspnea, easy fatigability, angina pectoris, and other nonlocalizing complaints. These symptoms are due to a left-to-right shunt or ischemia related to coronary steal phenomenon.[1-8] The degree of shunting determines the degree of clinical symptoms and the age of presentation. In large fistulas, congestive heart failure, myocardial ischemia, rupture of dilated coronaries, hemopericardium or peripheral embolization may also develop. From the clinical perspective, the presence of a continuous murmur at the right parasternal area and radiologic evidence of increased pulmonary vasculature in acyanotic children may suggest a cardiac fistula. The differential diagnosis includes patent ductus arteriosus, ruptured sinus of Valsalva, ventricular septal defect, and aortopulmonary window.[1-8] Electrocardiography, coronary artery imaging, and echocardiography are helpful modalities for the definite diagnosis.
The closure of CCFs is recommended in both symptomatic and asymptomatic patients.[1-8] Fistulas can be closed with percutaneous techniques using detachable balloons, platinum micro-coils or steel coils.[3,8] Factors favoring the success of transcatheter closure include the ability to cannulate the feeding branch adequately and safely, and the presence of a single, narrow restrictive drainage site. Multiple communications between the fistula and coronaries and the presence of large branches may decrease the success of transcatheter closure of CCF.[3,8] The diameter of the fistula tract determines the feasibility of closure using percutaneous techniques. Otherwise, surgical closure of large CCFs is recommended to avoid cardiac complications.[1-8]
Currently, surgical closure techniques include ligation of the fistula alone (with or without cardiopulmonary bypass) or combined coronary artery bypass grafting after ligation.[1,3,5-7] In addition, thoracotomy or median sternotomy incisions can be used. The goal is the closure of the inlet and outlet tract of the fistula and division of the communication between the coronary artery and the terminal outflow area. Anatomically, CCFs often present with two different characteristics: In the first type, coronary segment proximal to the origin of the fistula is dilated, but the distal segment is normal. These fistulas can be closed by epicardial ligation. Ligation site can be the origin of the fistula or both proximal and distal coronary segment around the origin of fistula tract. In the latter case, coronary bypass grafting is necessary after ligation. In the second type of presentation, coronary artery is dilated and fistula terminates in the right or left chambers of the heart. In these cases, CCFs are ligated by intracardiac purse-string sutures at the site of termination with cardiopulmonary bypass.[4,5,7] Although surgical closure is simple in most cases, surgeon should determine the precise location and tract of the fistula before the operation. The clear mental image of the fistula should be established before operation. From the surgical view, fistulas can be first exposed macroscopically during operation and are simply ligated. Second, arteriotomy is performed to expose the origin of the fistula and an intraarterial ligation of the origin site is made. Third, termination site is exposed within the cardiac chambers or great vessels and fistula is closed internally.
In the repair of large CCFs, the only disadvantage may be seen during delivery of cardioplegia solution.[7] As the fistula is giant in size, an excessive left-to-right shunt may cause coronary ischemia and infarction of the distal coronary system due to steal phenomenon during cardioplegia delivery.[7] To avoid this complication, total cardiopulmonary bypass was initially established and, then, the right atrium was opened and fistula outlet was immediately closed during the delivery of cardioplegia solution in our case. This allowed the proper delivery of cardioplegia to the left coronary system, particularly to the left ventricle. Alternatively, retrograde delivery of cardioplegia can be a safer alternative in certain cases. In conclusion, coronary-cameral fistulas are rarely diagnosed in clinical practice, particularly in childhood. The closure is recommended to prevent endocarditis, coronary ischemia, and associated myocardial dysfunction. Of note, surgical closure is needed in the management of large coronary-cameral fistulas.
Declaration of conflicting interests
The authors declared no conflicts of interest with respect to
the authorship and/or publication of this article.
Funding
The authors received no financial support for the research
and/or authorship of this article.
1) Mavroudis C, Backer CL, Rocchini AP, Muster AJ, Gevitz
M. Coronary artery fistulas in infants and children: a
surgical review and discussion of coil embolization. Ann
Thorac Surg 1997;63:1235-42.
2) Sunder KR, Balakrishnan KG, Tharakan JA, Titus T, Pillai
VR, Francis B, et al. Coronary artery fistula in children and
adults: a review of 25 cases with long-term observations. Int
J Cardiol 1997;58:47-53.
3) Mangukia CV. Coronary artery fistula. Ann Thorac Surg
2012;93:2084-92.
4) Cheung DL, Au WK, Cheung HH, Chiu CS, Lee WT.
Coronary artery fistulas: long-term results of surgical
correction. Ann Thorac Surg 2001;71:190-5.
5) Ipek G, Omeroglu SN, Goksedef D, Balkanay OO, Basar I,
Ayan F. Giant right coronary artery aneurysm associated with
coronary-cameral fistula. Tex Heart Inst J 2012;39:442-3.
6) Freund JE, Yuko-Jowi C, Freund MW. Transcatheter
embolization of a large aneurysm in a congenital coronary
cameral fistula from the left coronary artery to the right
ventricle. Catheter Cardiovasc Interv 2015;85:435-9.