The use of extracorporeal cardiopulmonary resuscitation (ECPR) has often been shown to save the lives of patients under cardiac arrest; however, a study reported that the difference between ECPR use and non-use was not statistically significant.[4] In addition, patients who died despite ECPR often had irreversible organ injuries, when the cause of cardiopulmonary resuscitation (CPR) was not treated in advance.[5] Herein, we report the first case of cardiac arrest in the operating room due to total abdominal aortic occlusion (AAA) caused by myxoma detachment which was unable to be diagnosed preoperatively and successfully treated with ECPR.
The operation continued after the patient recovered, and the thrombus was quickly removed by Fogarty arterial embolectomy using a 5-Fr catheter with inguinal incisions. The femoral artery approach was used to avoid abdominal incision, as the patient's health condition was not stable. However, 30 min after ROSC and 10 min after thrombus removal, cardiac arrest occurred again, and the decision to initiate extracorporeal membrane oxygenation (ECMO) therapy was made. The ECMO setup used a venoarterial configuration (VA-ECMO), and a 6-mm polytetrafluoroethylene conduit was used to extend the left femoral artery with 6-0 Surgipro suture for the insertion of the perfusion cannula. Perfusion and drainage cannulas were inserted into the left femoral artery and vein, respectively. No distal perfusion catheter was inserted. The arrest-to-ECMO time was 35 min. After ECMO, the patient"s vital signs stabilized, and the patient was transferred to the intensive care unit. The thrombus was approximately 5.5 cm and had a mucoid appearance according to a macroscopic examination performed by the pathologist.
Immediately after the operation, two-dimensional echocardiography revealed an ejection fraction of 20% with no other structural abnormalities. On the postoperative Day 1, we performed thoracic and abdominal CT evaluations of the remnant thrombus, but found no other lesions (Figure 2). On the postoperative Day 7, a tracheostomy was performed. The ECMO weaning was successful on the postoperative Day 16, and normal cardiac function was observed on follow-up two-dimensional echocardiography. The patient was transferred to the ward and discharged after 52 days of postoperative hospitalization. The patient was followed for 12 months, and no complications were reported. The biopsy results obtained during the patient"s hospitalization indicated a myxoma (Figure 3). A written informed consent was obtained from the patient.
Cardiac arrest occurred twice in our patient. The first event appeared to be a vasoplegic feature, while we were attempting general anesthesia, and the patient responded relatively quickly to conventional CPR with ROSC. However, the second event was assumed to be deterioration progressing to cardiac arrest with a reduced blood pressure and an increased afterload which was exacerbated by the retrograde Fogarty embolectomy in the early surgical phase. Our patient was healthy just a few hours before the event, and she reported no any hemodynamic consequences such as dyspnea, heart failure, or syncope prior to visiting the hospital. The diagnosis of myxoma was made solely on the basis of the postoperative histopathology findings. We believe that the AAO occurred at the level of the IMA; therefore, gastrointestinal symptoms such as abdominal pain were not severe in our patient, unlike that in the other reported case.[7]
There is currently insufficient evidence regarding the applicability of ECPR for cardiovascular disease in adults; however, the use of ECPR surely lends support to patients in a critical condition.[4,8] A rapid response by the ECMO team results in better outcomes in cardiac arrest patients.[8] In particular, ECPR is usually helpful in patients with complications of a potentially reversible origin, similar to that in our patient.[8] Besides, t he c ardiac a rrest o ccurred in t he operating room; thus, we had access to effective CPR. Therefore, ECPR is a reasonable treatment option in patients with cardiac arrest, when it can be provided in a relatively short time.[4]
The VA-ECMO was initiated using the femoral artery and vein in our case due to the sudden nature of the cardiac arrest. In general circumstances, retrograde perfusion by VA-ECMO could be hazardous, since it could lead to stroke with peripheral embolization; however, we had no alternative technical option (e.g., axillary artery or central cannulation by sternotomy) at that time, and the CPR to ECMO time exceeded 35 min. Despite these difficulties encountered in the operating room, the patient survived. Our case represents a relatively uncommon extracardiac manifestation of myxoma. In a similar situation, the possibility of unexpected embolic events due to myxoma leading to rapid deterioration and heart failure, and eventually pulmonary edema and cardiac arrest, should be considered.
In conclusion, extracorporeal membrane oxygenation is a life-saving treatment for refractory cardiopulmonary arrest. To the best of our knowledge, this is the first reported case of survival after extracorporeal cardiopulmonary resuscitation for acute abdominal aortic occlusion due to myxoma without other complications.
Declaration of conflicting interests
The authors declared no conflicts of interest with respect to
the authorship and/or publication of this article.
Funding
The authors received no financial support for the research
and/or authorship of this article.
1) Swartz MF, Lutz CJ, Chandan VS, Landas S, Fink GW.
Atrial myxomas: pathologic types, tumor location, and
presenting symptoms. J Card Surg 2006;21:435-40.
2) Lee KS, Kim GS, Jung Y, Jeong IS, Na KJ, Oh BS, et al.
Surgical resection of cardiac myxoma-a 30-year single
institutional experience. J Cardiothorac Surg 2017;12:18.
3) Yuan SM, Yan SL, Wu N. Unusual aspects of cardiac
myxoma. Anatol J Cardiol 2017;17:241-7.
4) Holmberg MJ, Geri G, Wiberg S, Guerguerian AM, Donnino
MW, Nolan JP, et al. Extracorporeal cardiopulmonary
resuscitation for cardiac arrest: A systematic review.
Resuscitation 2018;131:91-100.
5) Tramm R, Ilic D, Davies AR, Pellegrino VA, Romero
L, Hodgson C. Extracorporeal membrane oxygenation
for critically ill adults. Cochrane Database Syst Rev
2015;1:CD010381.
6) Citro R, Masiello P, Bossone E, Provenza G, Mastrogiovanni
G, Baldi C, et al. Giant left atrial myxoma: an unusual
cause of acute pulmonary edema. J Am Soc Echocardiogr
2008;21:978.e1-3.