In this article, we present a case of radiologically and clinically diagnosed with COVID-19 early after lung cancer surgery.
Figure 1: Mass appearance extending to hilar region of right hemithorax.
Histopathological examination was reported as a bronchial carcinoid tumor. The patient underwent right pneumonectomy and systematic mediastinal lymph node dissection through a right thoracotomy incision. The patient was discharged on postoperative Day 3 without any complication.
On postoperative Day 9, the patient was admitted due to dry cough and dyspnea. Vital signs were as follows: blood pressure: 130/90 mmHg, respiration: 20 breaths/min, pulse: 90 bpm, body temperature: 37°C, and peripheral capillary oxygen saturation (SpO2): 98% on ambient air. Breath sounds were not heard at the right hemithorax of the pneumonectomized patient. However, breath sounds were normal at the left hemithorax. Laboratory values were as follows: leukocyte:10.9x109/L, lymphocytes:1.9x109/L, D-dimer: 3,108 ng/dL, and C-reactive protein (CRP): 97 mg/L (Table 1).
Table 1: Postoperative laboratory test results
A nasopharyngeal swab sample was taken from the patient twice within 48 h. Also, pleural fluid samples were taken from the pneumonectomy cavity. Reverse-transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 was performed using all samples and all results were reported as negative. Thoracic CT revealed peripheral ground-glass opacity (GGO) with irregular contours located in left lung (Figures 2 and 3). The patient was isolated for 14 days. He was treated with oral hydroxychloroquine sulfate 200 mg b.i.d. for five days, oral azithromycin 500 mg daily for five days, oral oseltamivir 75 mg b.i.d. for five days, and intravenous piperacillin/tazobactam 4.5 g t.i.d. for seven days. Prophylactic dose of enoxaparin 4,000 IU once daily was added to the treatment to prevent the embolic complications of COVID-19. The patient was given 02 (2 L/min) O2 through the nasal cannula during the hospital stay.
Figure 2: Peripherally located ground-glass opacity view of the upper lobe of left lung.
Histopathological examination was reported as an atypical bronchial carcinoid tumor and benign mediastinal lymph nodes. The Ki-67 proliferation index of the tumor was reported as 23%. Therefore, adjuvant chemotherapy was planned for the patient. Our patient was discharged after COVID-19 treatment and a 14-day isolation period. He is still under follow-up without any problems in our outpatient clinic.
Patients with COVID-19 have had a wide range of symptoms ranging from mild symptoms to severe illness. Common symptoms at the onset of illness are fever (98%), cough (76%), and myalgia or fatigue (44%), while dyspnea can be also seen in 55% of patients.[3,4] Dyspnea and cough are expected symptoms in the early postoperative period in pneumonectomized patients. The reasons can be listed as follows: decrease in respiratory capacity after resection, infection, bronchopleural fistula, and hemorrhage. However, as our hospital is a pandemic hospital, COVID-19 pneumonia was considered in the differential diagnosis of this patient.
A wide variety of thoracic CT findings in COVID-19 has been reported in the different studies. However, all studies indicate that the main thoracic CT feature of COVID-19 pneumonia is the presence of GGO (86%), typically with a peripheral and subpleural distribution. The other thoracic CT findings are consolidations (29%) and linear focal atelectatic changes (14%).[5] Peripherally located GGO and consolidation were also detected on thoracic CT in our patient. If COVID-19 pneumonia causes acute respiratory distress syndrome (30%), bilateral diffuse consolidations are observed in thoracic CT.[3-7]
The diagnosis of COVID-19 must be confirmed by SARS-CoV-2 RT-PCR testing. However, with limitations of sample collection and transportation and inadequate kit performance, the total positive rate of SARS-CoV-2 RT-PCR for throat swab samples was reported to be about 30 to 60% at the initial presentation. In the current emergency, the low sensitivity of SARS-CoV-2 RT-PCR implies that many COVID-19 patients can be unrecognized and cannot receive appropriate treatment in time. Such patients constitute a risk for infecting a larger population given the highly contagious nature of the virus. However, thoracic CT had a higher sensitivity for the diagnosis of COVID-19, compared to initial SARS-CoV-2 RT-PCR testing from swab samples.[6,7]
In a study by Ai et al.,[8] involving 1,014 patients in Wuhan, China who underwent both thoracic CT and SARS-CoV-2 RT-PCR testing, the authors reported 97% sensitivity of thoracic CT in suggesting COVID-19, based on positive SARS-CoV-2 RT-PCR results, and 75% in patients with negative SARS-CoV-2 RT-PCR results, but showing positive thoracic CT findings. They concluded that thoracic CT had a high sensitivity for the diagnosis of COVID-19 and could be considered as a primary tool for the current COVID-19 detection in epidemic areas. Another study by Li and Xia[9] in 53 patients concluded that thoracic CT had a low rate of missed diagnosis of COVID-19 (3.9%, 2/51) and might be useful as a standard method for the rapid diagnosis of COVID-19 to optimize the management of patients. In patients with negative SARS-CoV-2 RT-PCR results, if clinical and radiological findings are compatible with COVID-19, isolation and medical treatment should be started immediately.[8-10] Although SARSCoV- 2 RT-PCR results were negative in our patient, we immediately isolated our patient and started his treatment promptly.
In conclusion, no specific medication and vaccination is recommended to treat COVID-19 patients currently. However, governments and pharmaceutical companies are actively involved in the struggle of finding an effective drug to defeat the coronavirus as early as possible. Identifying infected individuals and advising them to self-isolate for the duration of the infection minimize the risk of transmission of the virus to the others, thereby, slowing the spread. In addition, patients undergoing pneumonectomy for lung cancer are thought to be at a high risk for the development of postoperative pulmonary complications and these complications are associated with high mortality rates. Pneumonia is considered as one of the most common and serious complications after pneumonectomy. If early and effective treatment is applied, pneumonia can be successfully treated in patients with pneumonectomy. Successful outcomes can be achieved with prompt diagnosis and treatment in patients with COVID-19 pneumonia after pneumonectomy.
Declaration of conflicting interests
The authors declared no conflicts of interest with respect to
the authorship and/or publication of this article.
Funding
The authors received no financial support for the research
and/or authorship of this article.
1) Carbone M, Green JB, Bucci EM, Lednicky JA.
Coronaviruses: Facts, Myths, and Hypotheses. J Thorac
Oncol 2020;15:675-8.
2) Thoracic Surgery Outcomes Research Network, Inc,
Antonoff M, Backhus L, Boffa DJ, Broderick SR, Brown
LM, et al. COVID-19 Guidance for Triage of Operations
for Thoracic Malignancies: A Consensus Statement From
Thoracic Surgery Outcomes Research Network. Ann Thorac
Surg 2020;110:692-6.
3) Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical
features of patients infected with 2019 novel coronavirus in
Wuhan, China. Lancet 2020;395:497-506.
4) Çınar HNU, İnce Ö, Çelik B, Saltabaş F, Özbek M.
Clinical course of COVID-19 pneumonia in a patient
undergoing pneumonectomy and pathology findings during
the incubation period. Swiss Med Wkly 2020;150:w20302.
5) Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A
Novel Coronavirus from Patients with Pneumonia in China,
2019. N Engl J Med 2020;382:727-33.
6) Kanne JP. Chest CT Findings in 2019 Novel Coronavirus
(2019-nCoV) Infections from Wuhan, China: Key Points for
the Radiologist. Radiology 2020;295:16-7.
7) Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X,
et al. CT Imaging Features of 2019 Novel Coronavirus (2019-
nCoV). Radiology 2020;295:202-7.
8) Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation
of Chest CT and RT-PCR Testing for Coronavirus Disease
2019 (COVID-19) in China: A Report of 1014 Cases.
Radiology 2020;296:E32-E40.