It has been shown clearly that hyperventilation causes vasospastic angina. However, leftward shiftment of the Hb-O2 dissociation curve leading to a difficulty in release of oxygen from the hemoglobin has not been ever been studied as a provocative factor. In this study we studied the effect of passive hyperventilation on coronary sinus lactate and oxygen content in patients undergoing coronary artery bypass surgery.
Material and Method:
15 patients undergoing elective coronary bypass operation were entered to the study. Coronary sinus catheter was placed by the surgeon before cardiopulmonary bypass for sampling. Arterial and coronary sinus blood samples were obtained before hyperventilation. 5 minutes after the initiation of hyperventilation second blood samples (PCO2 =19.6mmHg, P50vv =20.7mmHg) were obtained. Student t test was used for statistical analysis .
Results:
Arterial blood pH value increased from 7.42±0.06 to 7.60±0.06 (p<0.001). Coronary sinus oxygen content decreased from 8.0± 1.9ml/dL to 6.9±2.2 ml/dL after hyperventilation (p<0.002). Coronary sinus lactate level increased from 0.9±0.38 mmol to 1.45±0.60 mmol (p<0.006).
Conclusion:
The incidence of coronary artery spasm due to hyperventilation is approximately 25%. In our study group this incidence was found to be 80% which is significantly higher. This finding suggests that there seems to be additional factors other than vasospasm aggrevating coronary ischemia with hyperventilation such as impairment of the release of oxygen to the tissue.
Koroner sinüs kanı oksijen içeriğinin kontrol değeri 8.0± 1.9ml/dL iken hiperventilasyon sonrası bu değer 6.9±2.2 ml/dL olarak tespit edildi (p<0.002) (Tablo 3). Koroner sinüs kanı laktat içeriği 0.9± 0.38 mmol den 1.45±0.60 mmol değerine yükseldi (p<0.006) (Şekil 1).
1) Gobel FL, Nordstrom LA, Nelson RR, et al: The rate pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 1978,57:549-56.
2) Rasmussen K, Bagger JP, Bottzauw J, et al: Prevalence of vasospastic ischemia induced by the cold pressor test or hyperventilation in patients with severe angina. Eur Heart J 1984, 5: 354 - 61.
3) Kaijser L, Berglund B: Myocardial lactate extraction and release at rest and during heavy exercise in healthy men. ACTA Physiol Scand 1992,144:39-45.
4) Maseri A, Severi S, De Nes M, et al: 'Variant ' angina: One aspect of a continuos spectrum of vasospastic myocardial ischemia. Am J Cardiol 1978,42:1019-35.
5) Specchia G, De Servi S, Falcone C, et al: Coronary arterial spasm as a cause of exercise induced ST segment elevation in patients with variant angina. Circulation 1979,59:948-54.
6) Mortensen SA, Vilhelmsen R, Sandoe E: Prizmental's variant angina (PVA). Circadian variation in response to hyperventilation. ACTA Med Scand 1981;644:38-41.
7) Mortensen SA, Vilhelmsen R, Sandoe E: Non-pharmacological provocation of coronary vasospasm. Experience with prolonged hyperventilation in the coronary care unit. Eur Heart J 1983,4:391-7.
8) Yasue H, Nagao M, Omote S, et al: Coronary arterial spasm and Prinzmetal's variant form of angina induced by hyperventilation and Tris-buffer infusion. Circulation 1978,58:56-62.
9) Previtali M, Ardissino D, Barberis P, et al: Hyperventilation and ergonovine test in Prinzmetal's variant angina pectoris in men. Am J Cardiol 1989,63:17-20.
10) Girotti A, Crosatto JR, Messuti H, et al: The hyperventilation test as a method for developing successful therapy in Prinzmetal's angina. Am J Cardiol 1982;49:834-41.
11) Ghio S, Angoli L, Bromucci E, et al: Hyperventilation-induced coronary vasospasm refractory to intracoronary nitroglycerin. Am Heart J 1990;4:957-61.
12) Pujadas G, Tamashiro A, Baptista G, et al: Coronary vasospasm elicited by the cold hyperventilation test (abstr). Proceedings VIII European Congress of Cardiology, Paris, 1980: 152.