Methods: A total of 31 patients (18 males, 13 females; mean age 51.5 years; range, 39 to 61 years) who were treated with long-term mechanical ventilation due to low cardiac output syndrome after cardiopulmonary bypass and cardiac surgery were retrospectively analyzed between December 2014 and December 2018. In addition, an in vitro lung model and different doses of hydroxyethyl starch in the heat and moisture exchangers to mimic the airway secretions were used and the proper interval to change heat and moisture exchangers was evaluated.
Results: In the in vitro l ung m odel, t he m ean a irway r esistance was 19.4±0.2 cmH2O/L/sec in the 5 mL group (p=0.060), 20.3±1.0 cmH2O/L/sec in the 10 mL group (p=0.065), and 30.2±1.7 cmH2O/L/sec in the 15 mL group (p<0.001). The airway resistance of heat and moisture exchangers, and total hospital stay and ventilation duration significantly increased in the seven-day group compared to the one-day and three-day groups. The positive culture of bacteria was also significantly higher in the seven-day group.
Conclusion: Our study results suggest that heat and moisture exchangers can be safely used for an efficient and timely removal of airway secretions. Volume of approximately 15 mL of liquid in the airflow can dramatically increase the airway resistance. The three-day interval of changing heat and moisture exchangers is ideal in a cardiothoracic surgery intensive care unit where patients have more airway secretions than patients in the general intensive care unit.