We report a case of mitral valve insufficiency caused by acute infective endocarditis in a patient with chronic noncardiac cirrhosis (Child-Pugh class B) and drug-induced ARF, which was treated successfully with mitral valve replacement (MVR) with CPB.
Laboratory data showed remarkably increased C-reactive protein and moderate liver dysfunction (Table 1). A chest X-ray showed mild cardiomegaly and bilateral pulmonary edema. Transthoracic echocardiography showed mitral regurgitation (grade III MR) with vegetation (Figure 1). Transesophageal echocardiography was not performed because she had a history of esophageal variceal hemorrhage.
Table 1: Changes in biochemical and hematological values
A blood culture grew vancomycin- and gentamicinsensitive Enterococcus faecalis. All these findings supported a diagnosis of acute infective endocarditis resulting in mitral valve regurgitation accompanied by acute heart failure.
Abdominal ultrasonography revealed liver cirrhosis, moderate ascites, cholelithiasis, and splenomegaly. These findings and the laboratory data suggested moderate chronic liver cirrhosis (Child-Pugh class B).
The patient had a five-year history of primary biliary cirrhosis. We learned that she had been followed up in the liver transplant program and had suffered five incidents of esophageal variceal hemorrhage during its course. We also learned that she had undergone a failed transjugular intrahepatic portosystemic shunt procedure the previous month.
Intravenous gentamicin and vancomycin were immediately initiated to treat the acute infective endocarditis. On the eighth day of antimicrobial treatment, the patient developed drug-induced ARF. Urea and creatinine levels increased to 78 mg/dl and 5.38 mg/dl, respectively. The gentamicin was halted, and the vancomycin dose was regulated according to the creatinine level.
The patient underwent two preoperative hemodialysis sessions. The urea and creatinine values decreased to 30.8 mg/dl and 2.73 mg/dl, respectively.
Since the heart failure was not controlled by drug therapy and a large vegetation was located on the anterior mitral leaflet, we decided to perform surgery. Under CPB support, the heart was arrested and the left atrium opened, revealing chordal rupture and perforation of the anterior mitral leaflet. The damaged mitral valve was removed and replaced with a prosthetic valve (27 mm Carpentier-Edwards bioprosthesis) (Edwards Lifesciences, Inc., Irvine, CA, USA). The operation proceeded uneventfully.
Fluid balance was achieved with hemofiltration during CPB. The mitral valve was excised and sampled for microbiological and histopathological analysis. There was polymorphonuclear leucocyte infiltration, and bacterial infiltration on histopathological examination of the mitral leaflets (Figure 2). However, no growth was observed in the culture of the valve.
The high prothrombin time, which was due to hepatic disease, was treated with fresh frozen plasma. No hemorrhage complications were recorded in the postoperative period. Renal function was screened, and hemodialysis was performed three times postoperatively. The vancomycin dosage was regulated according to creatinine level and continued for a total of six weeks. The albumin level was maintained as 2.5 mg/dl, and the hypoalbuminemia was treated. Paracentesis was required twice due to massive ascites. The patient recovered well after an uneventful postoperative course.
The patient’s NYHA class was I-II in the 18th postoperative month. On echocardiography, pericardial effusion without tamponade and normofunction of the prosthetic mitral valve were observed. Pericardial effusion was followed by medical treatment. The patient’s renal function improved, and hepatic function remained as Child-Pugh class B in the 18th postoperative month.
Patients with liver cirrhosis are considered high risk for open cardiac surgery under CPB. According to recent studies, while patients with mild cirrhosis can tolerate open heart surgery, the incidence of postoperative complications is high. These complications include infections, excessive mediastinal hemorrhage, gastrointestinal disorders, hepatic and renal failure, fluid retention manifesting as ascites, pericardial effusion, and pleural effusion. The decreased platelet count and loss of platelet function also increase the postoperative hemorrhage duration.[2] Furthermore, patients with advanced cirrhosis have a significantly higher mortality rate (50-80%) after open heart surgery under CPB.[3,4] According to many studies, elective cardiac surgery using CPB is generally considered to be contraindicated for patients with moderate to severe cirrhosis (Child-Pugh class B or C cirrhosis).[1] Postoperative mortality of patients with Child-Pugh class A, B, and C cirrhosis was 6%, 67%, and 100%, respectively.[1,6,7] Our patient had Child-Pugh class B cirrhosis. Considering the patient’s history of esophageal variceal hemorrhage along with liver cirrhosis being a contraindication for anticoagulant therapy, we decided to use a bioprosthetic valve. In the postoperative period, highly increased prothrombin time, hypoalbuminemia, and acid development were observed and treated.
Infective endocarditis complicating liver cirrhosis is infrequently reported. The prognosis of patients with infective endocarditis and liver cirrhosis is poor. Endocarditis complicating the course of cirrhosis usually arises on a previously normal endocardium. Grampositive cocci, mainly Streptococcus spp. (S. viridans, enterococcus, bovis) and Staphylococcus aureus are the most common causative organisms, but the possibility of endocarditis caused by enterobacteria should not be underestimated.[8] Hsu et al.[9] reported the clinical features of infective endocarditis in Taiwanese patients with liver cirrhosis. In this study, they showed that infection with Staphylococcus species was a dominant cause, and methicillin resistance was common.
Our patient had infective endocarditis, acute mitral insufficiency, drug-induced ARF (dependent on dialysis), and liver cirrhosis (Child-Pugh Class B). Despite the high mortality, surgery may be the only effective treatment option in such cases. We successfully performed MVR. Thus, with careful preoperative preparation and good perioperative management, open heart surgery can be performed with a positive outcome in patients with moderate liver cirrhosis and ARF.
Declaration of conflicting interests
The authors declared no conflicts of interest with respect
to the authorship and/or publication of this article.
Funding
The authors received no financial support for the
research and/or authorship of this article.
1) An Y, Xiao YB, Zhong QJ. Open-heart surgery in
patients with liver cirrhosis. Eur J Cardiothorac Surg
2007;31:1094-8.
2) Rosner MH, Okusa MD. Acute kidney injury associated with
cardiac surgery. Clin J Am Soc Nephrol 2006;1:19-32.
3) Koya D, Shibuya K, Kikkawa R, Haneda M. Successful
recovery of infective endocarditis-induced rapidly
progressive glomerulonephritis by steroid therapy combined
with antibiotics: a case report. BMC Nephrol 2004;5:18.
4) Nakayama Y, Sakata R, Ura M, Miyamoto TA. Coronary
artery bypass grafting in dialysis patients. Ann Thorac Surg
1999;68:1257-61.
5) Miyahara K, Maeda M, Sakurai H, Nakayama M, Murayama
H, Hasegawa H. Cardiovascular surgery in patients on
chronic dialysis: effect of intraoperative hemodialysis.
Interact Cardiovasc Thorac Surg 2004;3:148-52.
6) Takahashi M, Li TS, Ikeda Y, Ito H, Mikamo A, Hamano K.
Successful aortic valve replacement for infective endocarditis
in a patient with severe liver cirrhosis. Ann Thorac Cardiovasc
Surg 2006;12:287-9.
7) Bizouarn P, Ausseur A, Desseigne P, Le Teurnier Y,
Nougarede B, Train M, et al. Early and late outcome after
elective cardiac surgery in patients with cirrhosis. Ann
Thorac Surg 1999;67:1334-8.
8) Navasa M, Rodés J. Bacterial infections in cirrhosis. Liver Int
2004;24:277-80.