The patient underwent coronary artery bypass grafting under hypothermic (28 ºC) cardiopulmonary bypass (CPB) and aortic valve replacement. For myocardial protection, antegrade multidose crystalloid cardioplegia, topical hypothermia, and antegrade warm blood reperfusion were used. Following aortotomy, severe stenosis and a small annulus (through which a 19-no sizer could not be passed) were observed (Fig. 2). The aortic valve cusps were significantly thickened by foam cell infiltration. The posterior aortic root was enlarged using a bovine pericardial patch (Tutopatch, Tutogen Medical GmbH, Neunkirchen-Germany) and a 21-mm St. Jude mechanical bileaflet prosthetic valve was implanted in the supraannular position. The right coronary artery and the left anterior descending coronary artery were revascularized by the right and left internal thoracic arteries, respectively. Aortic cross-clamping time was 95 minutes and CPB duration was 130 minutes.
The postoperative course was uneventful. Echocardiographic examination in the second postoperative month revealed a 15-mmHg systolic gradient between the aorta and the left ventricle. In the second postoperative year, there were no clinical manifestations of coronary artery disease and aortic stenosis. Lipid levels were close to normal range with a low-lipid diet and statin treatment (atorvastatin 40 mg/day).
Coronary artery bypass grafting alleviates angina and improves the quality of life in patients with FH. Kawasuji et al.[5,6] reported that aggressive use of arterial grafts may be helpful in patients with FH and may improve long-term freedom from reoperation.
Aortic valve dysfunction in FH suggests that hypercholesterolemia affects not only the coronary arteries but also the aortic valve. Aortic stenosis is common in the homozygous form and aortic root involvement is always present.[3] Patients with a small aortic annulus and a critical valvular aortic stenosis can be treated by aortic valve replacement, combined with an appropriate technique of aortic root enlargement that will relieve left ventricular outflow tract obstruction.
1) Farmer JA, Gotto AM Jr. Dyslipidemia and other risk factors for CAD. In: Braunwald E, editor. Heart disease. 5th ed. Philadelphia: W. B. Saunders; 1997. p. 1142-3.
2) Hopkins PN. Familial hypercholesterolemia-improving treatment and meeting guidelines. Int J Cardiol 2003;89:13-23.
3) Rallidis L, Naoumova RP, Thompson GR, Nihoyannopoulos P. Extent and severity of atherosclerotic involvement of the aortic valve and root in familial hypercholesterolaemia. Heart 1998;80:583-90.
4) Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003;168:1-14.