Herein, we present a case treated with a bovine mesenteric vein graft for superficial femoral artery (SFA) occlusion. He developed graft aneurysm one month after the operation and the xenograft was replaced with an ePTFE graft.
After one month, he presented with a pulsatile mass in the left inner thigh region. Doppler ultrasonography showed enlargement of the graft. Computed tomography angiography showed primary aneurysm of the xenograft (Fig. 1a). Replacement of the aneurysmatic biologic material with an ePTFE graft was decided. During the operation, proximal and distal diameters of the xenograft measured 2.9 cm (Fig. 1b) and 3 cm, respectively. The differential diagnosis from false aneurysms was made with the intact suture lines. The bioprosthetic vascular graft was excised and a below-knee femoropopliteal bypass operation was performed with a ringed ePTFE graft 6 mm x 70 mm in size. The postoperative course was uneventful and the patient was discharged on the sixth postoperative day.
Pathologic examination of the xenograft showed aneurysmatic dilatation of the xenograft together with accumulation of inflammatory granulation tissue including giant cells.
Xenografts may be associated with complications, one of which is thrombosis.[6] When thrombosis occurs, replacement of the heterograft is recommended.[6,7] Another complication is infection.[6] Once the graft is infected, ligation and replacement of the graft are necessary. New anastomoses must be away from the previous anastomotic sites.[6,7]
True or false aneurysm formation is another major complication. Aneurysm formation has been reported to be as high as 50%,[2,6] with false aneurysms being more common.[6] It is suggested that proteolytic digestion of foreign biomaterials mediates aneurysm formation. Collagenase exposure may also contribute to aneurysm formation in organic materials.[8]
Aneurysms more commonly occur in proximally placed grafts[6] and the risk increases by time.[1,9] In case of an aneurysm, there is always a risk for rupture. Thus, excision and replacement of the graft are indicated. A new bypass can be performed using an ePTFE graft or a native saphenous vein. Many studies advocate that repeated use of biovascular prostheses should not be preferred.
Some studies have documented various disadvantages of vascular bioprostheses, especially low primary patency rates when they are used for infrainguinal arterial reconstructions.[3,4] Autologous saphenous veins are still the best choice for the treatment of peripheral arterial lesions. In case of absence of saphenous vein or when it is reserved for any other major surgical procedure, ePTFE grafts seem to be safer options when compared with biologic heterografts. We believe that xenografts warrant further research and experience.
1) Schroder A, Imig H, Peiper U, Neidel J, Petereit A. Results of a bovine collagen vascular graft (Solcograft-P) in infrainguinal positions. Eur J Vasc Surg 1988;2:315-21.
2) Rossi G, Munteanu FD, Padula G, Carillo FJ, Lord JW. Nonanastomotic aneurysms in venous homologous grafts and bovine heterografts in femoropopliteal bypasses. Am J Surg 1976;132:358-62.
3) Kovalic AJ, Beattie DK, Davies AH. Outcome of ProCol, a bovine mesenteric vein graft, in infrainguinal reconstruction. Eur J Vasc Endovasc Surg 2002;24:533-4.
4) Schmidli J, Savolainen H, Heller G, Widmer MK, Then- Schlagau U, Baumgartner I, et al. Bovine mesenteric vein graft (ProCol) in critical limb ischaemia with tissue loss and infection. Eur J Vasc Endovasc Surg 2004;27:251-3.
5) Senkaya I, Aytac II, Eercan AK, Aliosman A, Percin B. The graft selection for haemodialysis. Vasa 2003;32:209-13.
6) Garvin PJ, Castaneda MA, Codd JE. Etiology and management of bovine graft aneurysms. Arch Surg 1982;117:281-4.
7) Hertzer NR, Beven EG. Venous access using the bovine carotid heterograft: techniques, results, and complications in 75 patients. Arch Surg 1978;113:696-700.