Study design: Seventy-six female Wistar-Albino rats, weighing 180-220 gr, were evenly allocated into ten groups. A weight-drop method was used to achieve head trauma. Samples were obtained from the left lung 24-h after the injury. Lung tissue-associated myeloperoxidase activity and lipid peroxidation levels were measured. A one-way analysis of variance (ANOVA) was applied to test the differences in the lipid peroxidation levels and myeloperoxidase activities between groups. Then, post-hoc comparison was performed.
Results: Firstly, head trauma substantially elevated lipid peroxidation and myeloperoxidase activity in lung tissue in the severe trauma group (p<0.05). Secondly, methylprednisolone significantly decreased lipid peroxidation in trauma- moderate group (p<0.05), whereas in trauma-severe group erythropoietin was superior (p<0.05). Thirdly, erythropoietin was more effective than methylprednisolone in decreasing myeloperoxidase activity in both trauma groups (p<0.05).
Conclusion: Erythropoietin efficiently protected lung tissue against polymorphonuclear leukocytes infiltration and oxidative damage. Further studies are warranted to better clarify the management of lung injury in brain injury/death model to transfer sufficient data to clinical studies providing suitable donor lungs and better survival rates in recipients.